

Dialectal variation in obstruent voice and the Voicing Effect in English: An acoustic study on New Zealand English

Erika Sajtós Pázmány Péter Catholic University, Hungary sajtos.era@gmail.com

Katalin Balogné Bérces

Pázmány Péter Catholic University, Hungary Catholic University in Ružomberok, Slovakia berces.katalin@btk.ppke.hu & katalin.berces@ku.sk

Overview

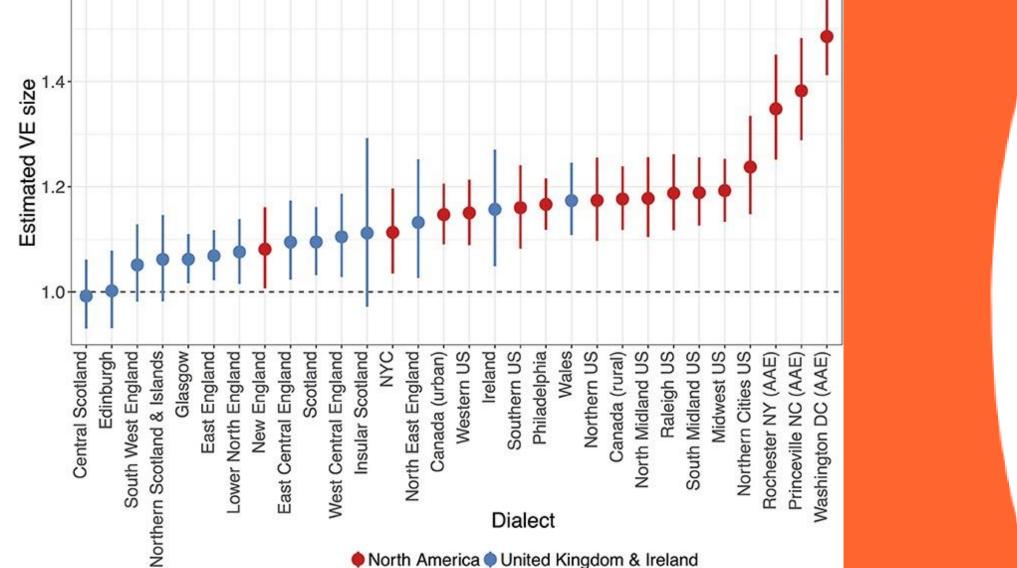
Research questions

Data & results

Discussion

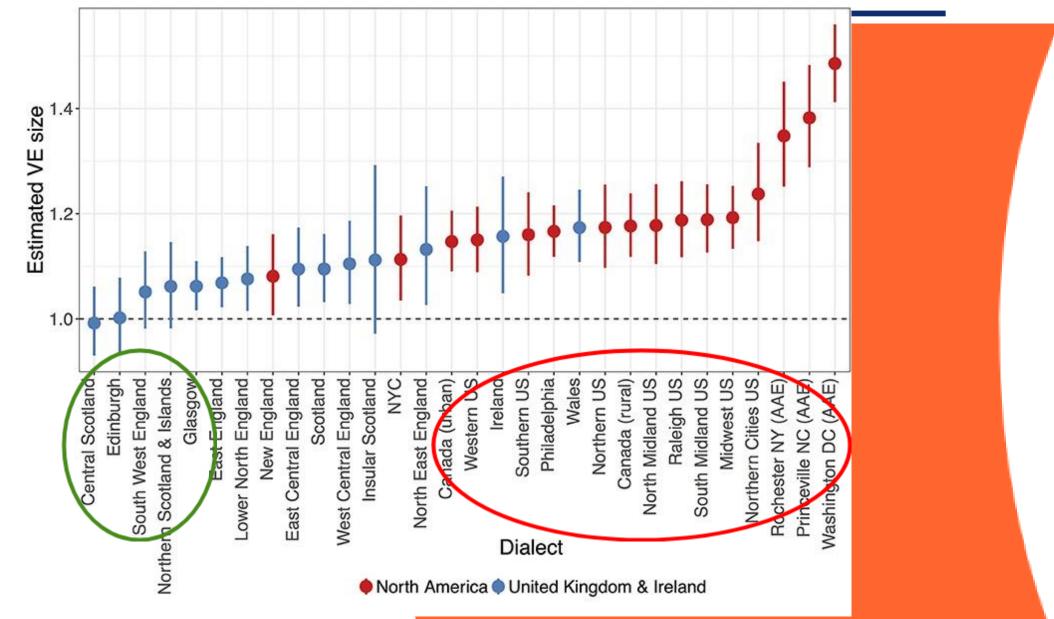
Conclusion

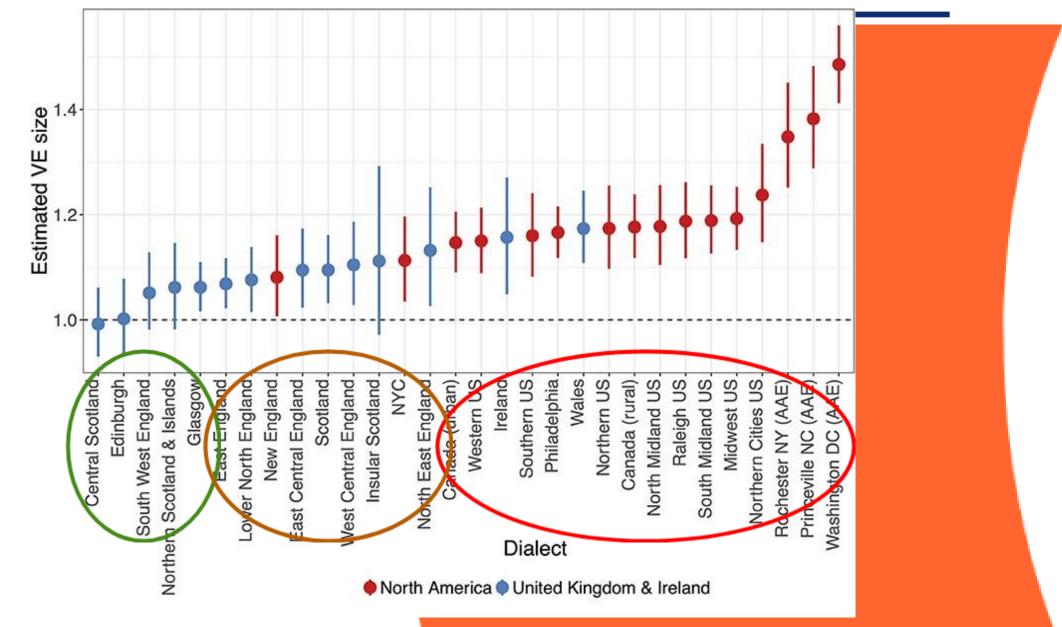
https://www.readersdigest.ca/culture/kiwi-bird/


- the Voicing Effect (VE; aka Pre-Fortis Clipping)
- vowels are shorter before (voiceless)/fortis consonants (e.g., Chen 1970*)
 - more recent phonetic studies: Coretta (2020)**, Morley & Smith (2023), etc.
 - triggered by phonological rather than physiological 'voicing' (e.g., Fox & Terbeek 1977, Walsh & Parker 1981)
- cross-linguistically: its size is
 - considerably larger in English (0.60-0.70) (Chen 1970, Cho 2016, etc.)
 - than in other languages (0.80 [Norwegian, Korean, Russian]* 0.90 [Spanish, German and French*, Italian and Polish**, Hungarian***])
- in English, preceding vowel duration (V/C ratio) serves as a primary cue to the perception of the obstruent's fortisness (e.g., Jones 1950, Raphael 1972, Klatt 1976)

(***based on Kovács 2002)

- more recently, research on the English VE has turned to:
 - its size in spontaneous speech (rather than isolated, read words) and nonpre-pausal positions; and
 - its non-uniformity in **English varieties**
- Tanner et al. (2020): a scale:


North America



Adam Mickiewicz University Poznań

- more recently, research on the English VE has turned to:
 - its size in spontaneous speech (rather than isolated, read words) and non-prepausal positions; and
 - its non-uniformity in English varieties
- Tanner et al. (2020): a scale: VE size: US > England > Scotland
- our interpretation:*
 - US: dialectal variation but generally heavy aspiration in fortis and voiceless lenis (+ final devoicing in regions/AAVE): phonetically, fortisness/lenisness is not cued in active voice but in vowel duration
 - **England**: dialectal variation but generally less heavy aspiration + voice languages in the North/North-East
 - **Scotland**: voice languages in Scots-speaking areas (the Lowlands) + SVLR

> the larger the functional load of vowel length, the larger the VE

*(Selected) literature

- Bailey, G. & E. Thomas. 1998. Some aspects of African-American vernacular English phonology. In S. S. Mufwene, J. R. Rickford, G. Bailey & J. Baugh (eds.), African-American English: Structure, history, and use. Routledge. 93–118.
- Balogné Bérces, K. 2022. Accent boundaries and linguistic continua in the laryngeal subsystems of English. Linguistics Beyond and Within 8: 24–36.
- Balogné Bérces, K. 2024. Dialectal variation in the laryngeal phonology of English. Ms.
- Herd, W. 2020. Sociophonetic voice onset time variation in Mississippi English. J. of the Acoustical Society of America 147.1: 596–605.
- Hunnicutt, L. & P. A. Morris. 2016. Prevoicing and aspiration in Southern American English. U. Penn Working Papers in Linguistics 22.1: 215–224.
- Jacewicz, E., R. A. Fox & S. Lyle. 2009. Variation in stop consonant voicing in two regional varieties of American English. J. of the International Phonetic Association 39.3: 313–334.
- Pfiffner, A. M. 2023. Acoustic cues and obstruent devoicing in Minnesotan English. American Speech 2023.
- Scobbie, J. M. 2005. Interspeaker variation among Shetland Islanders as the long term outcome of dialectally varied input: Speech production evidence for fine-grained linguistic plasticity. QMUC Speech Science Research Centre Working Paper WP2.
- Scobbie, J. M. 2006. Flexibility in the face of incompatible English VOT systems. In L. M. Goldstein, C. T. Best & D. H. Whalen. (eds.), Laboratory Phonology 8: Varieties of phonological competence. de Gruyter. 367–392.
- Sonderegger, M., J. Stuart-Smith, T. Knowles, R. Macdonald & T. Rathcke. 2020. Structured heterogeneity in Scottish stops over the twentieth century. Language 96.1: 94–125.
- Stuart-Smith, J. 2004. Scottish English: Phonology. In E. W. Schneider, K. Burridge, B. Kortmann, R. Mesthrie & C. Upton (eds.), A handbook of varieties of English: Vol. 1. Phonology. de Gruyter. 47–67.
- Stuart-Smith, J. M. Sonderegger, T. Rathcke & R. Macdonald. 2015. The private life of stops: VOT in a real-time corpus of spontaneous Glaswegian. Laboratory Phonology 6.3–4: 505–549.
- Watt, D. & J. Yurkova. 2007. Voice Onset Time and the Scottish Vowel Length Rule in Aberdeen English. In J. Trouvain & W. J. Barry (eds.), Proceedings of the 16th International Congress of Phonetic Sciences. Universität des Saarlandes, Saarbrücken. 1521–1524.
- Whisker-Taylor, K. & L. Clark. 2019. Yorkshire Assimilation: Exploring the production and perception of a geographically restricted variable. J. of English Linguistics 2019: 1–28.
- Wilhelm, S. 2018. Segmental and suprasegmental change in North West Yorkshire A new case of supralocalisation? Corela [Online], HS-24. https://doi.org/10.4000/corela.5203
- Wolfram, W. 1994. The phonology of a sociocultural variety: The case of African American vernacular English. In J. Bemthal & N. Bankston (eds.), Child phonology: Characteristics, assessment, and intervention with special populations. Thieme. 227–244.
- Zee, T. 2015. Yorkshire Assimilation: An experimental investigation of gradient phonological alternation. BA Thesis, Utrecht University.

- southern-hemisphere Englishes: crucially missing from the scale!
- our aims:
 - New Zealand (Pākehā) English (NZE)
 - Māori English (ME)
 - our next phase: Australian English

of-new-zealand-with-cities

• southern-hemisphere Englishes: crucially missing from the scale!

• our aims:

- New Zealand (Pākehā) English (NZE)
- Māori English (ME)
- our next phase: Australian English

https://www.thoughtco.com/geography-of-australia-1434351

New Zealand (Pākehā) English

- a group of islands, little interaction
- a relatively **homogeneous** variety (Bauer & Warren 2004)
- slightly different regional and social accents (Hay et al. 2008)
 - Southland and South Otago
- 3 social (and stylistic) accents:
 - broad: the most consistent typical NZ pron.
 - general
 - cultivated: the closest to RP/SSBE

of-new-zealand-with-cities

Māori English (ME)

- proficiency in te reo Māori ('the Māori language', Austronesian) steadily declining (+ passive knowledge), revival efforts
- all Māori people speak English, and it is the dominant language of almost all of them
- distinctive varieties:
 - standard
 - vernacular
- all varieties of ME share many features with varieties of (Pākehā) NZE

of-new-zealand-with-cities

Previous studies

(Pākehā) NZE

- fortes are aspirated, lenes have very little voicing (Bauer & Warren 2004)
- overall vowel duration is shorter and VE is larger (0.59) than AmE/BrE (Cho 2016)
- VE from other studies:
 - older: 0.56
 - younger: 0.60
 - (on the basis of Maclagan & Hay 2007)
- speakers tend to prefer American or even Australian accents, and the prestigious model is now AmE rather than RP (Bayard 2000)

Māori English (ME)

Previous studies

(Pākehā) NZE

- fortes are aspirated, lenes have very little voicing (Bauer & Warren 2004)
- overall vowel duration is shorter and VE is larger (0.59) than AmE/BrE (Cho 2016)
- VE from other studies:
 - older: 0.56
 - younger: 0.60
 - (on the basis of Maclagan & Hay 2007)
- speakers tend to prefer American or even Australian accents, and the prestigious model is now AmE rather than RP (Bayard 2000)

Māori English (ME)

- the Maori lang.: single series of unaspirated (tenuis) obstruents
- initial /t/ non-aspiration (Holmes & Ainsworth 1996, Bell 2000, Warren & Bauer 2004), changing under the influence of English (Bauer 1997, etc.)
- (the frequent affrication of /t/ in general NZE is a confusing factor)
- increase in aspiration over time:

TABLE	1. Voice onset time (VOT) in milliseconds for /p/, /t/, and /k/ in English and Māori for
	one speaker from the MU, K, and Y groups (from Maclagan & King, 2007)

	MU			K	Y		
	Māori	English	Māori	English	Māori	English	
/p/	23	36	30	58	50	61	
/t/	26	42	43	69	53	78	
/k/	28	52	42	71	66	66	
Mean	25	43	41	66	57	68	
SD	10	16	18	15	22	21	
n	135	98	246	98	114	101	

TABLE 1. Voice onset time (VOT) in milliseconds for /p/, /t/, and /k/ in English and Māori for one speaker from the MU, K, and Y groups (from Maclagan & King, 2007)

	Ν	MU		K	Y		
	Māori	English	Māori	English	Māori	English	
/p/	23	36	30	58	50	61	
/t/	26	42	43	69	53	78	
/k/	28	52	42	71	66	66	
Mean	25	43	41	66	57	68	
SD	10	16	18	15	22	21	
n	135	98	246	98	114	101	

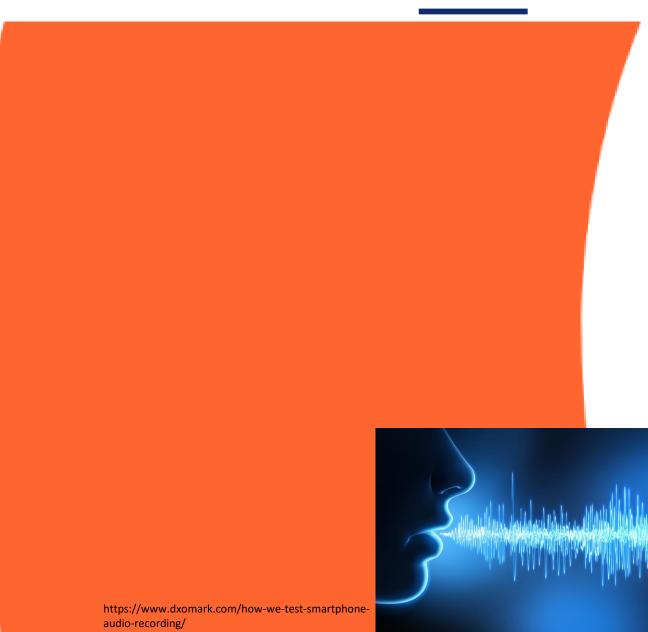
Research questions

Research questions

Previous, smaller-scale studies report larger VE in (Pākehā) NZE than in either BrE or AmE (0.56-0.60; Maclagan & Hay 2007; Cho 2016). Do our results confirm this? Does this correlate with a relatively/considerably long VOT in NZE?

Our hypothesis: NZE is aligned with US English, being closer to the maximal end of the scale in terms of both VOT and the VE, although with lower values, due to the more spontaneous speech style in our sample.

Research questions



Descriptions of Māori English (ME) (e.g., Warren & Bauer 2004) attribute traditionally weaker/less frequent aspiration to it (as a substrate effect). Do the ME speakers in our database preserve this feature? Where does ME's laryngeal system locate it on the VE scale?

Our hypothesis: ME's moderate aspiration assigns it to the lower end of the scale, i.e., close to Scotland, in terms of both VOT and the VE.

Data & results

Data & results

- sound recording corpora of spontaneous NZE/ME speech:
 - Tauranga City Libraries: https://paekoroki.tauranga.govt.nz
 - digitalNZ radio archives: https://digitalnz.org/records?tab=Audio&text=#
- sentences extracted
- acoustic analysis in Praat (Boersma & Weenink)
 - vowel duration: FLEECE, FACE, GOAT, LOT, TRAP, KIT, DRESS
 - VOT
- statistical analysis

https://www.dxomark.com/how-we-test-smartphone-audio-recording/

Speakers

Speaker	Age	Gender	Education	Occupation
M1	67	male	tertiary	writer
M2	47	female	tertiary	university professor
P1	54	female	tertiary	broadcaster/writer
P2	59	male	tertiary	reporter/journalist

- Mean age: 57 (8)
- Pakeha speakers: cultivated accent
- Maori speakers: standard accent, actively use the Maori language

Model & variables

multiple measurements of vowel duration/VOT for the same speaker

dependency linear mixed effects model (lme4) (Bates et al. 2015)

https://lp2m.uma.ac.id/qualitativeresearch-methods-objectivescharacteristics-and-strategies/

Fixed effects:

- voice (fortis/lenis)
- ethnicity (Pakeha/Maori)
- prosodic context (intervocalic/coda)
- height (high, non-high)

Random effect:

speaker

Results

Factors affecting vowel duration

Coefficient St. error t-value *p*-value

Intercept	94	10	9.7	<0.0001***
Voicing (fortis)	-11	3	-4.1	<0.0001***
Ethnicity (Pakeha)	-15	6	-2.5	<0.0001***
Prosodic context (coda)	1	2	0.4	0.0002463***
Vowel height (high)	-12	3	-4.6	<0.0001***

All *p*-values were generated via likelihood ratio tests.

Vowel duration

			n		All vowe	s	Fortis		Lenis	Fraction/ratio	
	Pake	ha	148	-	76 (41)		68 (30))	92 (54)	0.74 /1.36	
	Mao	ri	151	-	106 (46)		101 (4	12)	124 (53)	0.83/ 1.21	
		Durat	ion fract	ion by	ethnicity						
MA	AORI				0	,83					
DAV	EHA				0.74						
FAR					0,74						
	0	0,2	2 0,	,4	0,6 (),8	1				

Vowel duration

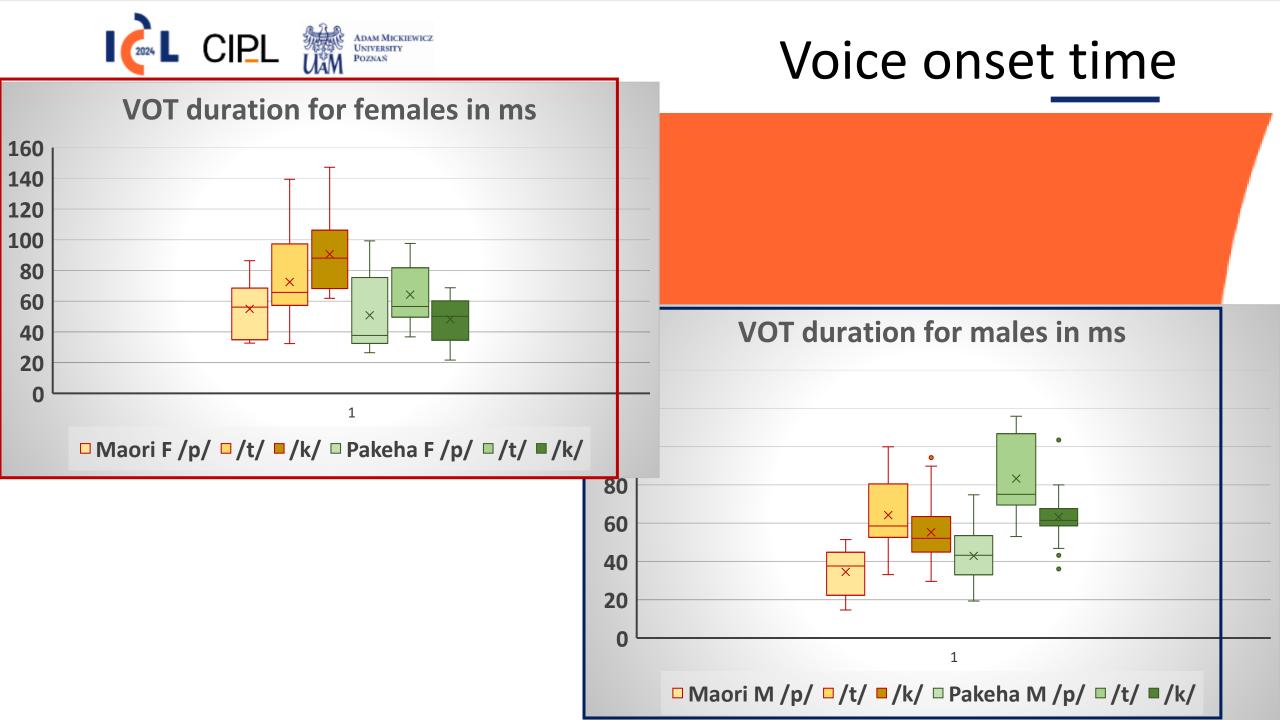
		n		All vo	wels	Fortis	5		Lenis	Fractio	on/ratio
Pak	eha	148		76 (41	.)	68 (30))		92 (54)	0.74 /1	36
Ma	ori	151		106 (4	6)	101 (4	42)		124 (53)	0.83 /1	21
	Durati	on fract	ion by	ethnic	ity			Au	thors	Speech	Fraction
					-					style	
								Ma	aclagan &	word list	0.56-0.6
MAORI					0,83			Ha	y 2007		
					_			Ch	o 2016	minimal	0.59
				<u>-</u>						pairs	
ΡΑΚΕΗΑ				0,7	4			ou	r data	running	0.74
										speech	
(0,2	2 0	,4	0,6	0,8	1					

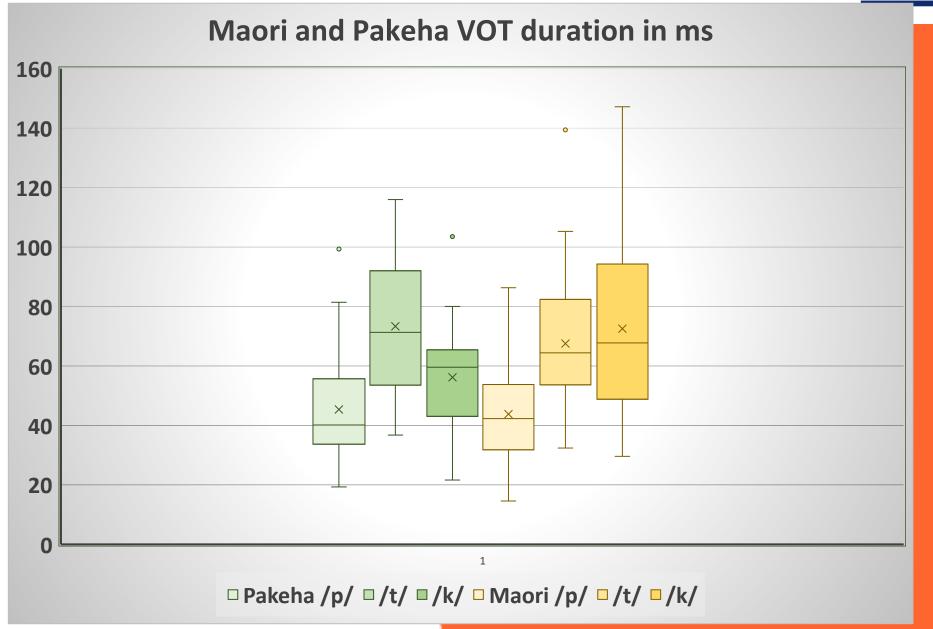
Factors affecting VOT

	Coefficient	St. error	t-value	<i>p</i> -value
Intercept	61	3	19	0.32 (ns)
Ethnicity (Pakeha)	-4	3	-1	0.32 (ns)
Gender (female)	4	3	1	0.33 (ns)

All *p*-values were generated via likelihood ratio tests.

similar values BUT


interesting patterns regarding gender


	Maori female	Maori male	Pakeha female	Pakeha male
/p/	55	35	51	43
/t/	73	64	64	83
/k/	91	55	48	63
Mean	76	55	54	60
SD	28	20	20	23
n	47	59	37	49

- Male speakers: longer VOT for the Pakeha speaker
- Female speakers: Maori speaker, affrication

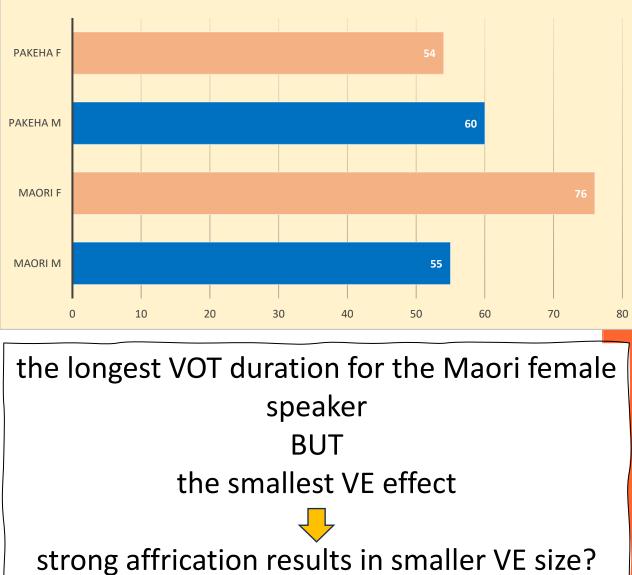
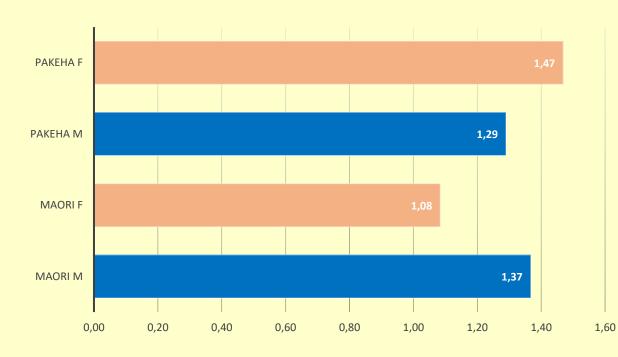

VOT: /p/ -> /t/ -> /k/

TABLE 1. Voice onset time (VOT) in milliseconds for /p/, /t/, and /k/ in English and Māori for one speaker from the MU, K, and Y groups (from Maclagan & King, 2007)

MU			K		Y		
Māori	English	Māori	English	Māori	English		
23 26 28	36 42 52	30 43 42	58 69 71	50 53 66	61 78 66		
25	43	41	66	57	68		
10 135	16 98	18 246	15 98	22 114	21 101		
	Māori 23 26 28 25 10	Māori English 23 36 26 42 28 52 25 43 10 16	Māori English Māori 23 36 30 26 42 43 28 52 42 25 43 41 10 16 18	Māori English Māori English 23 36 30 58 26 42 43 69 28 52 42 71 25 43 41 66 10 16 18 15	MāoriEnglishMāoriEnglishMāori23363058502642436953285242716625434166571016181522		


Voice onset time for the speakers

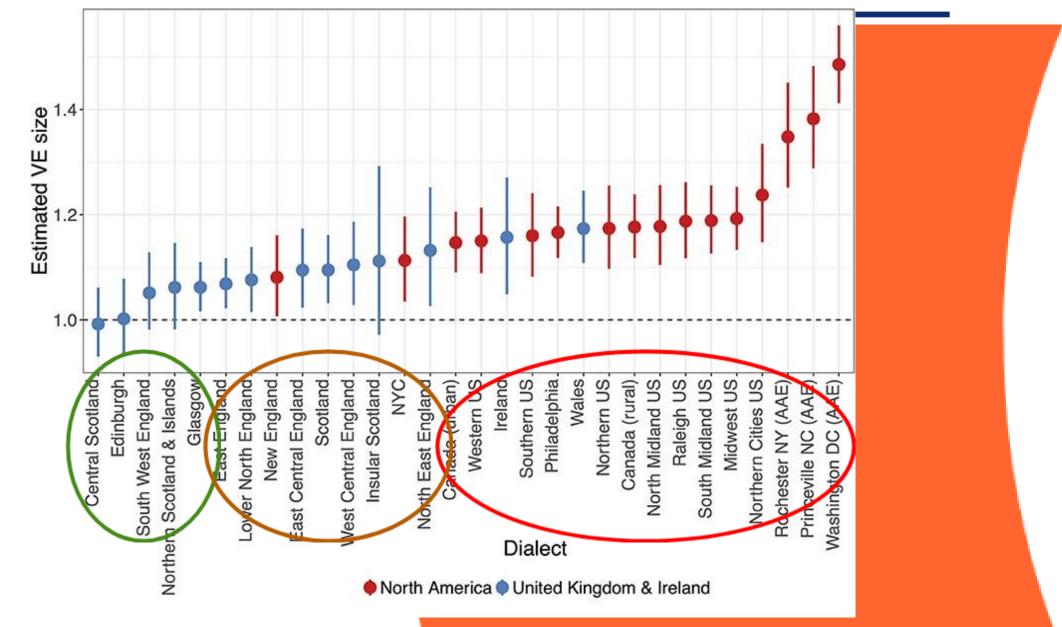
VOT & ratio/fraction

	Maori Maori		Pakeha	Pakeha
	Μ	F	Μ	F
VOT	55	76	60	54
Ratio/	1.37/	1.08/	1.29/	1.47/
fraction	0.73	0.92	0.78	0.68

Vowel duration ratio for the speakers

Previous, smaller-scale studies report larger VE in (Pākehā) NZE than in either BrE or AmE (0.56-0.60; Maclagan & Hay 2007; Cho 2016).

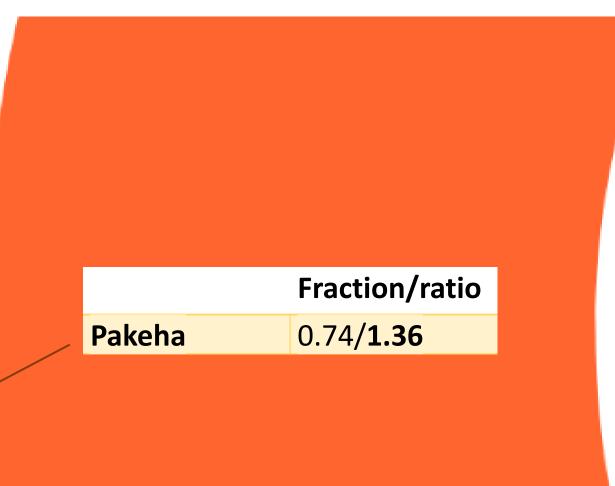
Do our results confirm this? Does this correlate with a relatively/considerably long VOT in NZE?


Our hypothesis

NZE is aligned with US English, being closer to the maximal end of the scale in terms of both VOT and the VE, although with lower values, due to our sample's more spontaneous speech style. -> Our results support this hypothesis.

Results

The Pakeha VE fraction/ratio is 0.74/1.36 -> the maximal end of the scale. VE size is smaller than in previous studies because of the speech style. VOT is 60 ms for Pakeha speakers, consistent with previous measurements (Maclagan & King 2007).



Philadelphia 1.17 Southern US 1.17 North Midland US 1.18 Northern US 1.18 Wales 1.18 Raleigh US 1.19 South Midland US 1.19 Midwest US 1.20 Northern Cities US 1.24 Rochester NY (AAE) 1.35 New Zealand English 1.36-Princeville NC (AAE) 1.39 Washington DC (AAE) 1.49

Descriptions of Māori English (ME) (e.g., Warren & Bauer 2004) attribute traditionally weaker/less frequent aspiration to it (as a substrate effect). Do the ME speakers in our database preserve this feature? Where does ME's laryngeal system locate it on the VE scale?

Our hypothesis

ME's moderate aspiration assigns it to the lower end of the scale, i.e., close to Scotland, in terms of both VOT and the VE. -> Our results do not support this hypothesis.

Results

The Maori VE fraction/ratio is 0.83/1.21 -> the maximal end of the scale. No previous data to compare with.

The VOT is 76, higher than we expected. Strong aspiration/affrication, especially for the female speaker. (Maclagan & King 2007: 68 ms for young speakers)

Philadelphia 1.17 Southern US 1.17 North Midland US 1.18 Northern US 1.18 Wales 1.18 Raleigh US 1.19 South Midland US 1.19 Midwest US 1.20 Maori English 1.21 + Northern Cities US 1.24 Rochester NY (AAE) 1.35 **New Zealand English 1.36** Princeville NC (AAE) 1.39 Washington DC (AAE) 1.49

Discussion

	Fraction/ratio
Pakeha	0.74/ 1.36
Maori	0.83/1.21

Conclusion

- We examined VE size in the speech of Pakeha and Maori speakers in spontaneous speech.
- We attempted to place these varieties on Tanner et al.'s VE scale.
- Our first hypothesis has been supported by our data
 - VE size in Pakeha speech is at the maximal end of the scale
 - with long VOT values
 - BUT with smaller VE size due to the speech style (spontaneous speech)
- Our second hypothesis has not been supported by our data
 - VE in Maori speech is also at the maximal end of the scale
 - with long VOT values
 - strong aspiration/affrication -> no substrate effect

References

- Bates, D., M. Maechler, B. Bolker & S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67.1: 1–48.
- Bauer, L. & P. Warren. 2004. New Zealand English: Phonology. In B. Kortmann, E. W. Schneider, K. Burridge, R. Mesthrie & C. Upton (eds.), A handbook of varieties of English: A multimedia reference tool, vol. 1. Mouton de Gruyter. 580–602.
- Bauer, W. 1997. The Reed reference grammar of Māori. Reed.
- Bayard, D. 2000. New Zealand English: Origins, relationships, and prospects. Moderna Språk 1: 8–14.
- Bell, A. 2000. Māori and Pakeha English: A case study. In A. Bell & K. Kuiper (eds.), New Zealand English. Victoria University Press. 221–248.
- Boersma, P. & D. Weenink. [Computer program]. Praat: doing phonetics by computer. http://www.praat.org/
- Chen, M. 1970. Vowel length variation as a function of the voicing of the consonant environment. Phonetica 22: 129–159.
- Cho, H. 2016. Variation in vowel duration depending on voicing in American, British, and New Zealand English. Phonetics and Speech Sciences 8.3: 11–20.
- Coretta, S. 2020. Vowel duration and consonant voicing: A production study. University of Manchester PhD diss.
- Fox, R. A. & D. Terbeek. 1977. Dental flaps, vowel duration and rule ordering in American English. J. of Phonetics 5.1: 27–34.
- Hay, J., M. Maclagan & E. Gordon. 2008. Dialects of English. New Zealand English. Edinburgh UP.
- Holmes, J. & H. Ainsworth. 1996. Syllable-timing and Māori English. Te Reo 39: 75–84.

- Jones, D. 1950. The phoneme: Its nature and use. Hefner.
- Klatt, D. 1976. Linguistic uses of segmental duration in English: Acoustic and perceptual evidence. J. of the Acoustical Society of America 59: 1209–1221.
- Kovács, M. 2002. Tendenciák és szabályszerűségek a magánhangzó-időtartamok produkciójában és percepciójában. U. of Debrecen PhD diss.
- Maclagan, M. & J. Hay. 2007. Getting *fed* up with our *feet*: Contrast maintenance and the New Zealand English "short" front vowel shift. Language Variation and Change 19: 1–25.
- Maclagan, M. & J. King. 2007. Aspiration of plosives in Māori: Change over time. Australian Journal of Linguistics 27.1: 81–96.
- Morley, R. L. & B. J. Smith. 2023. A reanalysis of the Voicing Effect in English: With implications for featural specification. Language and Speech 66.4: 935–973.
- Raphael, L. J. 1972. Preceding vowel duration as a cue to the perception of the voicing characteristic of word-final consonants in American English. The Journal of the Acoustical Society of America 51.4: 1296–1303.
- Tanner, J., M. Sonderegger, J. Stuart-Smith & J. Fruehwald. 2020. Toward "English" phonetics: Variability in the preconsonantal Voicing Effect across English dialects and speakers. Frontiers in Artificial Intelligence 3: 10.3389/frai.2020.00038.
- Walsh, T. & F. Parker. 1981. Vowel length and 'voicing' in a following consonant. J. of Phonetics 9.3: 305–308.
- Warren, P. & L. Bauer. 2004. Maori English: Phonology. In B. Kortmann, E. W. Schneider, K. Burridge, R. Mesthrie & C. Upton (eds.), A handbook of varieties of English: A multimedia reference tool, vol. 1. Mouton de Gruyter. 614–624.

Thank you for your attention!

Acknowledgements

Katalin Szőke-Oláh László Hricisák Bernadette Vine Paul Warren

https://www.freepik.com/premium-vedtor/funnyfat-kiwi-bird-hand-drawn-style_298087<mark>D3.h</mark>tm

This study is being conducted in the frame of project no. PPKE-BTK-KUT-23-2, supported by the Faculty of Humanities and Social Sciences of Pázmány Péter Catholic University. The second author's contribution is also part of the "Laryngeal patterns in synchrony and diachrony" project sponsored by the Hungarian National Research, Development and Innovation Office's grant #142498.