Prevocalic Tenseness in English，Binarity and the Typology of Long Vowel Distributions
Shanti Ulfsbjorninn
University of Deusto
s．ulfsbjorninn＠ucl．ac．uk
Katalin Balogné Bérces
Pázmány Péter Catholic University berces．katalin＠btk．ppke．hu

Aims

－A better understanding of binarity，long vowels，diphthongs and hiatuses in the framework of Strict CV
－An explanation for Prevocalic tenseness in SSB．
－A working typology of positional restrictions on long vowel distributions
－A novel mechanism for formalising typological variation and implicational relationships：（Phonological） Parameter Hierarchies（Ulfsbjorninn 2014，2017；Benz \＆Ulfsbjorninn 2018）（cf．Vaxman 2018）
－A Strict CV interpretation of quantity：Incorporation（Ulfsbjorninn 2014；Faust \＆Ulfsbjorninn to appear）．
－An analysis where English vowel length（not tenseness）is contingent on phonological quantity．．．
－Resolution to a long standing paradox created by moraic theory：if English allows trimoraic syllables CVVC（eg．shoulder），why doesn＇t it allow CVVV？

1 Background\＃1－VV in English（in current SSB）

1．1 Hiatus：Prevocalic Tenseness

（1）
An exceptionless static distribution：in English the first member of a hiatus，if stressed，is always tense：Léo，ruin，crayon，híatus，voyage，Nóam，flower
（2）In current SSB，PT also applies to unstressed vowels，e．g．，react，tuition
＂Pretonic V Tenseness＂（KIT－＞FLEECE，FOOT－＞GOOSE）．
Independently，no prevocalic schwa：＊mə．áu．
$->$ only tense vowels precede schwa

1．2 Monophthongisation in current SSB：diphthongs and hiatuses（cf．Szigetvári \＆Lindsey＇s CUBE）
（6）

SQUARE	／عə／or／eə／－＞［ع：］	e．g．，stairs，parent，Hungarian
NEAR	／ıə／－＞［⿺𠃊 $]^{1}$	e．g．，Lear $/$ leer，hero，sincere
CURE	／və／－＞［o：］	e．g．，poorr，sure，tourist（CURE－THOUGHT Merger）
（a）［1ヶə］	$\rightarrow \quad[\mathrm{lr}]$ ］＇Lear／leer＇	vs．［li：ə］＇Leah＇
（b）［Jwə］	$\rightarrow \quad[\mathrm{Jo:}]$＇sure＇	vs．［su：ə］＇sewer＇

2 Background\＃2－Phonological parameter hierarchies and Long vowel typology （cf．Ulfsbjorninn 2014，2017；Benz \＆Ulfsbjorninn 2018）

2．1 What restricts vowel length（positionally speaking）？
（7）If a language allows Vis then it universally allows Vis preceding a filled V（e．g．［ba：ra］）

[^0]Ulfsbjorninn \& Balogné Bérces
(8) The site of a long vowel's spreading is licensed by the following V

(9) (a) Medial Empty Nucleus (MEN) [ba:mØpi]

C	V	C	V	C	V	C	V
				\|		\|	
b	a			m		p	i

(b) Final Empty Nucleus (FEN) [ba:mØ]

(c) FEN is part of the V : [bama:]

C	V	C	V	C	
	\|	\|			
b	a	m	a		

2.2 Long vowel typology and the Parameter Hierarchy

(10) Positional restrictions on long vowels (${ }^{\circ}$ indicates a caveat)

\qquad	$\begin{gathered} \text { V:C.CV/\# } \\ \text { ba:mpi/ } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{V}: \mathrm{C} \# \\ & \text { ba:m } \end{aligned}$	$\mathrm{V}: \#$ bama:
Licensor type	MEN	FEN	FENinV:
Type 1			
Chugach	*	*	*
Type 2			
Turkish	*	*	\checkmark^{2}
Hausa	*	*	\checkmark
Type 3			
Icelandic	*3	\checkmark	\checkmark
Type 4			
Cairene Arabic	*	\checkmark	*
Type 5			
Palestinian Arabic	\checkmark^{4}	\checkmark	*
Type 6			
Hungarian, Pulaar ${ }^{5}$	\checkmark	\checkmark	\checkmark

[^1](11) Parameter hierarchy for long vowels

Above we see that Empty implies Filled and Medial implies Final. ${ }^{6}$

2.3 English long vowel settings and consequences for spreading

(12) Parameter hierarchy for long vowels (English settings shown in underline)

Given the parameter settings for English, a vowel may spread to any V position that is:
(13) (a) licensed by a filled vowel,
(b) in absolute word-final position, or
(c) before FEN but not before a MEN.
(14) Ternary monophthong

[^2]
$3 \quad$ Why is long vowel spreading binary? Quantity

3.1 Quantity and stress in Strict CV

(16) kamísa 'shirt' / papél 'paper' showing fixed stress

(17) Projection parameters and incorporation (based on Ulfsbjorninn 2014)

Setting Emptyp to $<$ yes $>$ has the following metrical effect on representations:
(18) CVC.CVC.CV with EmptyP $<$ no $>^{7}$

2		$*$				$*$				$*$
1		$*$				$*$				$*$
0	C	V	C	V	C	V	C	V	C	V
	\mid	\mid	\mid		\mid	\mid	\mid		\mid	\mid
	a	b	c		d	e	f		g	h

(19) CVC.CVC.CV with EmptyP < yes>

2		$*$				$*$				$*$
1		$*$		$*$		$*$		$*$		$*$
0	C	V	C	V	C	V	C	V	C	V
	\mid	\mid	\mid		\mid	\mid	\mid		\mid	\mid
	a	b	c		d	e	f		g	h

[^3](20) CVC.CVC.CV with Incorporation <yes> (b and e are equally 'heavy')

Incorporation $<$ yes $>(*=$ grid mark)
(a) Filled $\mathrm{V}_{1}=* *$
(b) Filled V_{1} prec Empty $\mathrm{V}_{2}={ }^{* * *}$)

3		*)				*)				
2		*				*				*
1		*		*) α		*		*) β		*
0	C	V	C	V	C	V	C	V	C	V
	\|	\|	\|		\|	\|	\|		\|	\|
	a	b	c		d	e	f		g	h

3.2 Quantity in English

(21) Incorporation (binary)

Project a V to L3 if prec (it precedes) an empty V
Incorporation is strictly local
CVVC and incorporation [Jouldə] 'shoulder'

3		$\left.{ }^{*}\right)_{\alpha}$					$*$
2		$*$					
1		$*$		$*)_{\alpha}$		$*$	
0	C	V	C	V	C	V	C
	\mid	\mid		\mid	\mid		V
	\int	o		u	l		d

3.3 Binary quantity $=$ binary spreading and hiatus sequences
[1r:] 'Lear/leer' [li:ə] 'Leah'
*) α

* α
*

4 Pretonic Prevocalic Tenseness
(23) Pretonic Prevocalic Tenseness
a. *mıáu
b. $\quad{ }^{\text {me.áu }}$
c. $\quad{ }^{\text {mə.áu }}$

$$
\begin{array}{lll}
\text { cf. } & \begin{array}{l}
\text { [mi.jésw] } \\
{\left[\text { tty. wí } \int \mathrm{yn}\right]}
\end{array} & \begin{array}{l}
\text { 'meow' } \\
\text { 'tuition' }
\end{array}
\end{array}
$$

(24) Pretonic tenseness [mij.ǽw] 'meow'

3			$*) \alpha$		
2		$*$		$*$	
1		$*$		$*$	
0	C	V	C	V	C
	I	$!_{, \ldots}, \ldots$	V		
	m	i	l		\mid
		a		u	

Conclusions

We saw a typology of long vowels expressed with the parameter hierarchy and where English sits within it. According to the conditions on long vowel spreading, there is no reason to exclude CVVV sequences.

Prevocalic tenseness is nearing completion as a process in SSB.
It comes from monophthongisation of lax vowels into schwa as long as they are part of a diphthong and not a hiatus. This eliminated lax vowels before schwa, while forbidding the creation of CVVV sequences.

Vowel length in English is inextricably tied to quantity and quantity in English is binary. That's why although there are CVVC syllables, there are no CVVVs.

Pretonic Prevocalic Tenseness comes as a product of gliding into a stressed syllable.

6 Results

Some pretonic vowels are remnants from hiatuses (eg. Leah), and others are created by gliding (tuítion). Lax vowels before schwas were smoothed into long lax vowels, eliminating them form this context.

Process

Pretonic lax (eg. tuition, create)	$>$ Tensing	
Pre-schwa lax (eg. bear, beer, sure)	$>$	Deletion of schwa
Pre-schwa tense (eg. leah)		

Distribution
Lax and Tense before vowels

No lax before vowels

References

Andriani, L. 2016. A parameter hierarchy approach to perfective auxiliary selection in Barese. Presented at: LAGB, University of York.
Baker, M. 2001. The Atoms of Language: The mind's hidden rules of grammar. London: Basic Books.
Benz, J. \& S. Ulfsbjorninn 2018. Improving the Formalism of Phonological Parameter Hierarchies. Presented at: PTA Workshop, GLOW 41, Budapest.
Biberauer, T., Roberts, I. \& M. Sheehan. 2013. No-choice Parameters and the Limits of Syntactic Variation. In: Santana-LaBarge, R. (ed), Proceedings of the 31st West Coast Conference on Formal Linguistics (WCCFL 31). Somerville, MA: Cascadilla Press. 46-55.

Biberauer, T. \& I. Roberts. 2012a. Towards a parameter hierarchy for auxiliaries: diachronic considerations. In:
J. Chancharu, X. Hu \& M. Mitrovic' (eds), Cambridge Occasional Papers in Linguistics, 6:209-36.

Biberauer, T. \& I. Roberts. 2012b. On the significance of what hasn't happened. Talk at: DiGS 14 (Lisbon).
Biberauer, T. \& I. Roberts. 2014a. Parameter setting. In: Ledgeway, A. \& I. Roberts (eds), The Cambridge Handbook of Historical Syntax. Cambridge: Cambridge University Press.
Biberauer, T. \& I. Roberts. 2014b. Contrastive Hierarchies in Phonology and Syntax: The Role of Third Factors (or: Why Phonology is not Different). (ms.). University of Cambridge.
Boeckx, C. \& E. Leivada. 2013. Entangled Parametric Hierarchies: Problems for an Overspecified Universal Grammar. PLoS One, 8(9):e72357.
Charette, M. 2008. The vital role of the trochaic foot in explaining Turkish word endings. Lingua, 118: 46-65.
Chomsky, N. 2005. Some simple Evo-Devo theses. (ms.). MIT.
Chomsky, N., Hauser, M. \& T. Fitch 2002. The Faculty of Language: What Is It, Who Has It, and How Did It Evolve? Science, 298:1569.
Faust, N. \& F. Torres-Tamarit. 2017. Stress and final /n/ deletion in Catalan: combining Strict CV and OT. Glossa, 2(1):63.
Faust, N. \& S. Ulfsbjorninn. to appear. Arabic stress without moras, extrametricality or syllables. In: Linguistic Review.
Harris, J. 1994. English Sound Structure. Oxford: Blackwell.
Harris, J. and E. Gussmann. 2002. Word-Final Onsets. In: UCL Working Papers in Linguistics, 14:1-14.
Kaye, J. 1995. Derivations and Interfaces. In: Durand, J. and Katamba, F. (eds.). Frontiers of Phonology. London \& New York: Longman, 289-332.
Kiparsky, P. 1991. Catalexis. (ms). Stanford University \& Wissenschaftskolleg zu Berlin.
Köhnlein, B. 2016. Contrastive foot structure in Franconian tone accent dialects. Phonology, 33(1):87-123.
Lowenstamm, J. 1996. CV as the only syllable type. In: J. Durand and B. Laks (eds.), Current Trends in Phonology: Models and Methods. Salford, Manchester: ESRI. 419-441.
McCarthy, J. J. 1988. Feature Geometry and Dependency: a review. Phonetica, 45:84-108.
Pöchtrager, M. A. 2006. The structure of length. PhD diss., University of Vienna.
ReCoS $=$ Rethinking Comparative Syntax, Department of Theoretical and Applied Linguistics, University of Cambridge. https://recos-dtal.mml.cam.ac.uk/
Roberts, I. 2012. Macroparameters and Minimalism: A Programme for Comparative Research. In: Galves, G., Cyrino, S, Lopes, R., Sandalo, F. \& J. Avelar (eds), Parameter theory and linguistic change. Oxford: Oxford University Press. 319-334.
Scheer, T. 2004. A Lateral Theory of Phonology. Vol 1: What is CVCV, and why should it be? Berlin: Mouton de Gruyter.
Scheer, T. 2013. Why phonology is flat: the role of concatenation and linearity. Language Sciences, 39:54-74.
Sheehan, M. 2014. Towards a parameter hierarchy for alignment. In: Santana-LaBarge, R. (ed.), Proceedings of WCCFL 31. Somerville, MA: Cascadilla Press. 399-408.
Szigetvári, P. 1999. VC Phonology: a theory of consonant lenition and phonotactics. PhD dissertation, ELTE, Budapest.
Szigetvári, P. \& G. Lindsey. CUBE (CUrrent British English). http://seas3.elte.hu/cube/accent.html
Ulfsbjorninn, S. 2014. A field theory of stress: the role of empty nuclei in stress systems. PhD dissertation, University of London.
Ulfsbjorninn, S. 2017. Markedness and formalising phonological representations. In Samuels, B. (ed.), Beyond Markedness in Formal Phonology. Amsterdam: John Benjamins Publishing Company.
Vaxman, A. 2018. Contribution of parameter dependencies to descriptive adequacy of accent theory. RFP 16, Paris 8.
Yoshida, S. 1993. Licensing of empty Nuclei: The case of Palestinian vowel harmony. The Linguistic Review, 10:127-159.
Yoshida, Y. 1999. On pitch accent phenomena in Standard Japanese. The Hague: Holland Academic Graphics.

[^0]: ${ }^{1}[$［jo $]$ when heavily accentuated．

[^1]: ${ }^{2}$ Only in monosyllables
 ${ }^{3}$ However, the language does allow mysterious light rising diphthongs (Árnason 2011).
 ${ }^{4}$ These are only permitted in derived words, however.
 ${ }^{5}$ The length is extremely restricted, however, because we are only looking at positional not melodic environments, the presence of even one long vowel in this syllable structure configuration would be enough to set the parameter to $<$ yes $>$.

[^2]: ${ }^{6}$ Interestingly, the implicational statement "Empty implies Filled" opens the door for third factor explanations. First, Emptiness is more marked than Filledness considering that phonology is a module devoted to externalisation (Chomsky, Hauser \& Fitch 2002; Chomsky 2005) and therefore phonological objects that will receive no phonetic interpretation need extra licensing and extra stipulations in the grammar (not less). Cyran (2003) discusses complexity scales and markedness in closely related way. However, Medial implies Final doesn't seem to follow so easily from general principles. Which begs the question: how did it become this way? Crucially these questions can only be asked with such clarity due to the formalism employed in the analysis of the typology (specifically Strict CV principles). In an instance of McCarthy's famous edict: "if the representations are right, the rules will follow" (1988:84).

[^3]: ${ }^{7}$ Filled nuclei project universally project to Line 2. Empty nuclei project to Line 1 (Ulfsbjorninn 2014; Faust \& Ulfsbjorninn to appear), for reasons that do not immediately concern the discussion here.

