“Boy, he must think we’re pretty stupid to fall for that again.”
Phonetic diversity and phonological uniformity in Germanic laryngeal phonology

Dániel Huber
(Université de Rennes 2, France)
&
Katalin Balogné Bérces
(PPKE University, Piliscsaba, Hungary)
1. Aims:

- in binary laryngeal systems: (initial) plosives in [voice] languages (where they are voiceless unaspirated vs. prevoiced) and [sg] languages (voiceless aspirated vs. devoiced/voiceless unaspirated)

- laryngeal realism: difference does not simply lie in the phonetic manifestation of an underlying voiceless vs. voiced distinction, but is of phonological relevance as it has serious consequences for the patterning of the whole system of obstruents

- most Germanic languages are straightforward examples for [sg]
- two of the "black sheep": Swedish and Dutch
- Swedish: "voice fallacy"
- Dutch: the usual [voice] analysis is debatable
- side-effect: phonetics vs. phonology
1. Aims:

Conclusion: phonological uniformity in the Germanic family of languages is more extensive than usually assumed
2. Phonetics vs. phonology

- phonology:
 - categorial
 - sensitive to prosodic and morphological/morpho-syntactic categories

- phonetics:
 - gradient
 - variable
 - rich in information (redundant)
2. Phonetics vs. phonology

- Hungarian: Jansen & Toft (2002): regressive voicing assimilation is a non-neutralising process: "physical reality"

- but: robust native intuition (mész/méz ~ mésztől/mézben 'whitewash/honey' ~ 'from whitewash=from honey/in whitewash=in honey', zsepi 'handkerchief, dimin.', fokhagyma (?) 'garlic', hoddog 'hotdog'): "mental reality"
2. Phonetics vs. phonology

"phonological features bisect a continuum of phonetic activity"
(Vaux 1998: 509)
2. Phonetics vs. phonology

a. Definition of $[\pm \text{spread glottis}]$ proposed here

- maximum spreading
- no spreading

b. All-or-nothing definition of $[\pm \text{spread glottis}]$

- maximum spreading
- no spreading
2. Phonetics vs. phonology

"phonological features bisect a continuum of phonetic activity"
(Vaux 1998: 509)

English aspiration:

(3) a. aspirated:

\[\text{tēn!} > \text{tēn} > \text{trāin} > \text{tēmperamēnt} > \text{attēnd/discōlor} > \text{lātēx/tēptēc} > \text{tomōrrow} > \text{Mēditerrānean} \]

b. the twilight zone:

\[
\begin{align*}
\text{Amērican} & > \text{matrīculate} > \text{māttress} > \text{lāter} > \text{lētter/mūppets} > \text{āfter} > \text{ēat} \\
\text{plāsticity} & > \text{sṭrēss} > \text{sṭēm/disguss}
\end{align*}
\]
2. Phonetics vs. phonology

"phonological features bisect a continuum of phonetic activity"
(Vaux 1998: 509)

English aspiration:

<table>
<thead>
<tr>
<th></th>
<th>aspirated</th>
<th>unaspirated 1</th>
<th>unaspirated 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) pát</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>póker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tén</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tiger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cut</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) répéat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>return</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>detér</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indicate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raccoon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) potáto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>police</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tomato</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>today</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>quáker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>póker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lóck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) léopard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clipper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vánity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lóck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) ráp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gállop</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cút</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stóp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>standard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scúll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) spill</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wásp</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scúll</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Laryngeal systems

<table>
<thead>
<tr>
<th></th>
<th>/p ~ b/</th>
<th>/b/</th>
<th>/pʰ/</th>
<th>/p′/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawaiian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K’ekchi</td>
<td></td>
<td></td>
<td></td>
<td>[cst gl]</td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
<td>[voice]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
<td>[spr gl]</td>
<td></td>
</tr>
</tbody>
</table>

one-way contrast

+ two-way contrast

+ three/four-way contrast...
Two-way laryngeal contrast in obstruents:

\[\text{b} \sim \text{p} \text{ vs. } \text{b} \sim \text{p}^h \text{ (lenis } \sim \text{ fortis)} \]

\[[p]=[\breve{b}] \rightarrow "\text{fortis}" / "\text{lenis}" \]

* cf. Iverson & Salmons 1995 (and subsequent publications), etc.
Two-way laryngeal contrast in obstruents:

\[\text{b} \sim \text{p} \text{ vs. } \text{b} \sim \text{p}^h \text{ (lenis ~ fortis)} \]

\[[p]=\text{[b]} \rightarrow "\text{fortis}" / "\text{lenis}" \]

VOT correlates of stops in Spanish vs. English (LaCharité & Paradis 2005)

<table>
<thead>
<tr>
<th>Phonological value</th>
<th>SPANISH</th>
<th>ENGLISH</th>
</tr>
</thead>
<tbody>
<tr>
<td>voiced /b, d, g/</td>
<td>-VOT (-40 to 0 msec)</td>
<td>+ VOT (0 to 30 msec)</td>
</tr>
<tr>
<td>voiceless /p, t, k/</td>
<td>+ VOT (0 to 30 msec)</td>
<td>+ VOT (> 50 msec)</td>
</tr>
</tbody>
</table>
Two-way laryngeal contrast in obstruents:

in what follows: arguments that

- voice and aspiration ([sg]) are two totally different mechanisms defining the two types of system and
- incompatible within two-way systems:
- there is no binary system in which truly voiced lenis contrasts with aspirated fortis (*b ~ pʰ)
4. Two totally different mechanisms

• voice totally inactive in [sg] languages (English, German, etc.): no assimilation!
• instead: "bidirectional devoicing":

```
obtain [əbˈθɛɪn]  matchbox [ˈmætʃbɒks]
cheesecake [ˈtʃiːzkeɪk]  baseball [ˈbæɪsbɔːl]
bigfoot [ˈbɪɡfʊt]  cookbook [ˈkʊkbʊk]
egghead [ˈeghɛd]  life gear [ˈlaɪfɡɪə(ɹ)]
roadster [ˈrɔʊdstə(ɹ)]  Shoot back! [ʃʊt ˈbæk]
```

•=> nothing happens! UR->SR
4. Two totally different mechanisms

"initial and final de-voicing": nothing happens!

UR -> SR:

<table>
<thead>
<tr>
<th>Utterance-initial</th>
<th>Utterance-final</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>Bravo! [ˈbraːvə]</td>
<td>Mad! [ˈmæd]</td>
</tr>
<tr>
<td>Good! [ˈɡʊd]</td>
<td>Go ahead! [ˈəhed]</td>
</tr>
<tr>
<td>Zany! [ˈзэ мн]</td>
<td>Think big! [ˈбɪɡ]</td>
</tr>
<tr>
<td>Damn! [ˈдэ мн]</td>
<td>Bob! [ˈбоб]</td>
</tr>
<tr>
<td>Very much! [ˈвер]</td>
<td>Leave! [ˈлів]</td>
</tr>
</tbody>
</table>
4. Two totally different mechanisms

- **plus**: intersonorant voicing of lenis: reading, reads it, Gardner, badly, bingo, big name, give it, Play Ball

- **phonetics**: the influence of the spontaneous phonetic voicing of the flanking sonorants, surface string-adjacency is the only requirement, applies automatically irrespective of phon/morph/synt context/structure
4. Two totally different mechanisms

The phonetics of English aspiration: is English really a clear case?

Mean VOT in msec. (average) (Lisker & Abramson 1967)

<table>
<thead>
<tr>
<th></th>
<th>initial, isolated</th>
<th>utterance-internal</th>
</tr>
</thead>
<tbody>
<tr>
<td>/b/</td>
<td>-101</td>
<td>-61</td>
</tr>
<tr>
<td>/d/</td>
<td>-102</td>
<td>-50</td>
</tr>
<tr>
<td>/g/</td>
<td>-88</td>
<td>-73</td>
</tr>
<tr>
<td>/p/</td>
<td>58</td>
<td>34</td>
</tr>
<tr>
<td>/t/</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>/k/</td>
<td>80</td>
<td>53</td>
</tr>
</tbody>
</table>
4. Two totally different mechanisms

The phonetics of English aspiration: is English really a clear case?

- variability
- lenis: prevoicing! (cf. Hungarian)
- fortis VOT may even go below 50 msec when non-initial
- again: phonology decides
4. Two totally different mechanisms

As opposed to

- [voice] languages: "Distinctive [voice] implies regressive voicing assimilation" (van Rooy & Wissing 2001)
 - Apparently countered by Swedish (Ringen & Helgason 2004: "Distinctive [voice] does not imply regressive assimilation: evidence from Swedish"): see below

- Spanish, French, Slavic, Hungarian, etc.
4. Two totally different mechanisms

RVA in Hungarian:

<table>
<thead>
<tr>
<th>rabtól</th>
<th>'rɒptoːl'</th>
<th>matchbox</th>
<th>'mɛdʒboks'</th>
</tr>
</thead>
<tbody>
<tr>
<td>rézkarc</td>
<td>'reːskɔrts'</td>
<td>baseball</td>
<td>'bɛːzboːl'</td>
</tr>
<tr>
<td>hangfal</td>
<td>'hɒŋkfol'</td>
<td>tökből</td>
<td>'tɔɡbøːl'</td>
</tr>
<tr>
<td>éghez</td>
<td>'eːkhez'</td>
<td>afgán</td>
<td>'ɒvgan'</td>
</tr>
<tr>
<td>roadshow</td>
<td>'roːtsɔː'</td>
<td>kertből</td>
<td>'kɛrdboːl'</td>
</tr>
</tbody>
</table>

(glosses: 'from prisoner' 'copper etching' 'loudspeaker' 'to sky' 'ibid.')</br>(glosses: 'toy car' 'ibid.' 'from pumpkin' 'Afghan' 'from garden')
4. Two totally different mechanisms

As opposed to

- [voice] languages: "Distinctive [voice] implies regressive voicing assimilation" (van Rooy & Wissing 2001)

- true laryngeal activity!

"The only source of phonological knowledge is phonological behaviour."
(Phonological epistemological principle, Jonathan Kaye, p. c.)
4. Two totally different mechanisms

Voicing assimilation triggered by sonorants

a. Sanskrit (Nespor & Vogel 1986: 118, 230)

sat – aha sad – aha 'good day'
samyak uktam samyag uktam 'spoken correctly'
tat namas tad namas 'that homage'

b. Slovak (Blaho 2004: 46)

vojak [k] 'soldier Nom.Sg.' vojaka [k] 'soldier Gen.Sg.'

vojak ide [g] 'the soldier goes'

les [s] 'forest Nom.Sg.' lese [s] 'forest Loc.Sg.' lesje [z] 'the forest is'

c. Cracow Polish (Kiparsky 2003: 334)

ja[g] nigdy 'as never' (cf. Warsaw Polish ja[k] nigdy 'as never')
4. Two totally different mechanisms

Voicing assimilation triggered by sonorants

d. Catalan (Bermúdez-Otero 2006: 2-3)

/p/ escu[b] molt '(s)he spits a lot'

/f/ bu[v] brusc 'abrupt puff'

/f/ bu[v] enorme 'enormous puff'

/s/ go[z] alat 'winged dog' cf. go[s]a 'bitch'

/s~z/ be[z]-avi 'great-grandfather'
4. Two totally different mechanisms

Sonorant transparency: Russian $i[s\#mts]\textit{enska}$ 'out of Mtsensk'
5. A detour: phonetics

- The simple phonetic realisation of a laryngeal setting may be misleading, but the direction of phonetic variability is dictated by deeply phonological aspects of segments.

- E.g., prevoicing/VOT varies with speech tempo, but:
 - As speech slows down, prevoicing increases in a true-voice language, but there is little or no effect on the VOT of the short lag stops,
 - Whereas in an aspirating language, when speech gets slower, VOT increases in long-lag stops, but there is little or no change in the short-lag stops.

- (Same for female/male difference: female ~ slow/clear)
5. A detour: phonetics

Hungarian: (Gósy & Ringen 2009:7-8)

<table>
<thead>
<tr>
<th>Stops</th>
<th>Prevoicing of lenis stops in initial position (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>females</td>
</tr>
<tr>
<td></td>
<td>mean</td>
</tr>
<tr>
<td>b</td>
<td>-100.12</td>
</tr>
<tr>
<td>d</td>
<td>-103.49</td>
</tr>
<tr>
<td>g</td>
<td>-99.01</td>
</tr>
</tbody>
</table>
5. A detour: phonetics

Hungarian: (Gósy & Ringen 2009:7-8)

<table>
<thead>
<tr>
<th>Stops</th>
<th>VOT values of fortis stops in initial position (ms)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>females</td>
<td>males</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>SD</td>
<td>mean</td>
</tr>
<tr>
<td>p</td>
<td>8.2</td>
<td>4.2</td>
<td>11.4</td>
</tr>
<tr>
<td>t</td>
<td>14.7</td>
<td>6.4</td>
<td>17.4</td>
</tr>
<tr>
<td>k</td>
<td>36.71</td>
<td>14.5</td>
<td>38.6</td>
</tr>
</tbody>
</table>
6. Language typology under laryngeal realism

- Romance and Slavic languages are generally classified as [voice]
- Germanic languages belong to the [sg] type
- with a handful of notable exceptions:
 - Yiddish (Iverson & Salmons 2008, etc.), upon arising from a Slavic background, took up the [voice] nature of the substrate, and as such, it exhibits plosive prevoicing and the expected pattern of voice assimilation
 - Dutch (Booij 1995, Iverson & Salmons 2008, etc.), as a result of contact with Romance, also developed into a [voice] system, has voice assimilation (an untypical pattern thereof, though) and prevoicing but no aspiration (Also: Afrikaans and West Flemish.)
 - Swedish (cf. Ringen & Helgason 2004, Petrova et al. 2006) has aspiration and no assimilation but considerable prevoicing in initial plosives
 - certain varieties of Scots/Scottish English (Wells 1982: 412-413, Iverson & Salmons 1999: 22-23) have no aspiration but instances of regressive spread of voicing and sometimes even prevoicing
7. Two of the "black sheep": Dutch and Swedish

Swedish:

- considerable prevoicing in initial plosives (cf. Ringen & Helgason 2004, Petrova et al. 2006, Helgason & Ringen 2008): 93% of the subjects’ stops had prevoicing longer than 10 ms

<table>
<thead>
<tr>
<th>Swedish initial plosives</th>
<th>phoneme</th>
<th>word</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pʰ]acka 'pack'</td>
<td>[tʰ]ak 'roof'</td>
<td></td>
</tr>
<tr>
<td>[b]ad 'bath'</td>
<td>[d]äck 'deck'</td>
<td></td>
</tr>
<tr>
<td>[kʰ]ub 'cube'</td>
<td>[ɡ]ap 'mouth'</td>
<td></td>
</tr>
</tbody>
</table>
7. Two of the "black sheep": Dutch and Swedish

Swedish:

- but: no (regressive) assimilation of some voicing property is attested:

- "the [voice] fallacy of [sg] languages" is but the result of phonetic interpretation; an optical illusion that is redundant and not an issue for phonology

- plus: phonetic evidence (!):

 - Helgason & Ringen (2008): female subjects had significantly shorter prevoicing, not longer as in Hungarian, than did the male subjects (66 ms vs. 109 ms)
7. Two of the "black sheep": Dutch and Swedish

Dutch:
van Alphen (2004: 50):

Figure 3-1. Waveforms of the initial voiced plosive and part of the vowel of the Dutch word /bo:t/ (upper panel) and of the initial voiceless plosive and part of the vowel of the Dutch word /po:t/ (lower panel)
7. Two of the "black sheep": Dutch and Swedish

Dutch:

![Table 1. VOT in Dutch, German and English](http://www.fikkert.com/Publications/5b.%20Voice_volume_tables.pdf)

(http://www.fikkert.com/Publications/5b.%20Voice_volume_tables.pdf)
7. Two of the "black sheep": Dutch and Swedish

Dutch:

<table>
<thead>
<tr>
<th>Voicing Lead</th>
<th>Short Lag VOT</th>
<th>Long Lag VOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>[voice]</td>
<td>[]</td>
</tr>
<tr>
<td>German</td>
<td>[]</td>
<td>[spread glottis]</td>
</tr>
<tr>
<td>English</td>
<td>[]</td>
<td>[spread glottis]</td>
</tr>
</tbody>
</table>

(http://www.fikkert.com/Publications/5b.%20Voice_volume_tables.pdf)
7. Two of the "black sheep": Dutch and Swedish

Dutch:

- laryngeal assimilations:
 - untypical patterns:
 - all voiceless obstruents trigger the devoicing of a following voiced fricative
 - voiced stops /b d/ trigger regressive voicing assimilation of all obstruents
- c) past tense allomorphy
- these processes would suggest that Dutch exploits both [spread glottis], to spread rightward in a) and c), and [voice], to spread leftward in b)
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns (Booij 1995:58-64)
7. Two of the "black sheep": Dutch and Swedish

(7a) Progressive Assimilation Rule: “a fricative is devoiced after a voiceless obstruent”
(Booij 1995:58, data op. cit. 58-59, but presentation modified)

```
Dutch:
opvallend /p#v/ > [pf] ‘remarkable’
stoepzout /p#z/ > [ps] ‘pavement salt’
opgraving /p#ɣ/ > [px] ‘excavation’
zoutvat /t#v/ > [tf] ‘salt tub’
zoutzuur /t#z/ > [ts] ‘hydrochloric acid’
straatgoot /t#ɣ/ > [tx] ‘gutter’
dakvenster /k#v/ > [kf] ‘dormer’

?kz ¹
?kɣ ¹
afval /f#v/ > [f:] ‘trash’
afzuigen /f#z/ > a[fz]uigen ‘to extract’
afgang /f#ɣ/ > [fx] ‘failure’
asvat /s#v/ > a[sf]at ‘ashbin’
waszak /s#z/ > [s:] ‘laundry bag’
wasgoed /s#ɣ/ > [sx] ‘laundry’
pechvogel /x#v/ > [xf] ‘unlucky person’
lachzak /x#z/ > [xs] ‘laughing machine’
lachgas /x#ɣ/ > [x:] ‘laughing gas’
```

¹ No example is given in Booij, although nothing seems to exclude these clusters
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

(2a) *Regressive Assimilation Rule:* “voiceless obstruents become voiced before a following voiced stop” (Booij 1995:59)

- klapband /p#b/ > [b:] ‘flat tyre’
- opdruk /p#d/ > [bd] ‘imprint’
- eetbaar /t#b/ > ee[db]aar ‘edible’
- potdicht /t#d/ > [d:] ‘tight’
- koekboek /k#b/ > koe[gb]oek ‘cookery book’
- zakdoek /k#d/ > [gd] ‘handkerchief’
- afbellen /f#b/ > [vb] ‘to ring off’
- stofdoek /f#d/ > [vd] ‘duster’
- kasboek /s#b/ > [zb] ‘cashbook’
- misdaad /s#d/ > [zd] ‘crime’
- lachbui /x#b/ > [yb] ‘fit of laughter’
- lachduif /x#d/ > [yd] ‘laugher’
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

<table>
<thead>
<tr>
<th>present stem</th>
<th>past sg. form</th>
<th>gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>ze/t/</td>
<td>ze[t+t]e</td>
<td>‘to put’</td>
</tr>
<tr>
<td>vi/s/</td>
<td>vi[s+t]e</td>
<td>‘to fish’</td>
</tr>
<tr>
<td>re/d/</td>
<td>re[d+d]e</td>
<td>‘to save’</td>
</tr>
<tr>
<td>raa/z/</td>
<td>raa[z+d]e</td>
<td>‘to rage’</td>
</tr>
<tr>
<td>roe/r/</td>
<td>roe[r+d]e</td>
<td>‘to stir’</td>
</tr>
<tr>
<td>zoe/n/</td>
<td>zoe[n+d]e</td>
<td>‘to kiss’</td>
</tr>
</tbody>
</table>
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

- therefore, Dutch seems to exploit both [sg] and [voice] in a binary system
- This is both strange for a Germanic language and deemed impossible under laryngeal realism
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

- therefore, Dutch seems to exploit both [sg] and [voice] in a binary system
- This is both strange for a Germanic language and deemed impossible under laryngeal realism

Honeybone (2005:337) on research by Vaux, Tsuchida, Cohn & Kumada, Iverson & Salmons, Jansen:

“A reasonable null hypothesis remains, however, that specifications will be the same across obstruent classes within one language, unless there is evidence to the contrary.”
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

• The origin of voicing is attributed to Romance/French influence (Iverson & Salmons 2003b, 2008, etc): (improper) language contact

• Huber & Balogné Bérces (2010):
 arguments are strong in favour of either [voice] or [sg] (and they both run into representational problems under laryngeal realism, esp. in GP)
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

Summary of what is [voice] and what is [sg] in Dutch laryngeal phonology, compared to “purely” [voice] (e.g. Hungarian) and [sg] (English) languages, with examples.
7. Two of the "black sheep": Dutch and Swedish

<table>
<thead>
<tr>
<th>Input</th>
<th>Hungarian</th>
<th>Dutch</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD -></td>
<td>DD – fokban 'in degree' (= fogban 'in tooth')</td>
<td>DD – opdruk 'imprint'</td>
<td>TT – matchbox</td>
</tr>
<tr>
<td>DT -></td>
<td>TT – fogtól 'from tooth' (= foktól 'from degree')</td>
<td>TT – schandpaal 'pillory'</td>
<td>TT – bagpipe</td>
</tr>
<tr>
<td>SZ -></td>
<td>ZZ – (hypothetical) részzenne 'music of part' (=rézzene 'copper music')</td>
<td>SS – asvat 'ashbin'</td>
<td>SS – push them</td>
</tr>
<tr>
<td>ZS -></td>
<td>SS – részserű 'copper-like' (≈ ésszerű 'reasonable')</td>
<td>SS – graafschap 'county'</td>
<td>SS – gravestone</td>
</tr>
<tr>
<td>TZ -></td>
<td>DZ – (hyp.) fokszene 'degree music' (=hyp.) fozgene 'tooth music')</td>
<td>TS – opvallend 'remarkable'</td>
<td>TS – deep valley</td>
</tr>
<tr>
<td>DS -></td>
<td>TS – fogszerű 'toothlike' (= fokszerű 'degree-like')</td>
<td>TS – aards (< aarde) 'earthy'</td>
<td>TS – bigfoot</td>
</tr>
<tr>
<td>SD -></td>
<td>ZD – mészben 'in whitewash' (=mézben 'in honey')</td>
<td>ZD – misdaad 'crime '</td>
<td>ST – birthday</td>
</tr>
<tr>
<td>ZT -></td>
<td>ST – méztől 'from honey' (= mésztől 'from whitewash')</td>
<td>ST – gift (< geven) 'gift'</td>
<td>ST – cheesecake</td>
</tr>
</tbody>
</table>

T stands for voiceless stop, D for voiced stop, S for voiceless fricative, Z for voiced fricative (where "voiced" and "voiceless" are used in the traditional, abstract phonological sense)
7. Two of the "black sheep": Dutch and Swedish

Dutch: Obstruent assimilation patterns

- It can be seen that Dutch patterns like [sg] systems, apart from RVA triggered by stops and having scope over any obstruent:
 - [voice] needed for RVA
 - [sg] and final devoicing can take care of the rest
7. Two of the "black sheep": Dutch and Swedish

Conclusions wrt Dutch:

- Dutch is a mixed system, but:
- only RVA makes it a [voice] system
- the fricative system is based on [sg]
- the past tense allomorphy is also based on [sg]
- therefore: [sg] may turn out to give a better fit in the overall analysis/ classification of the language
7. Two of the "black sheep": Dutch and Swedish

Conclusions wrt Dutch:

- plus: phonetic evidence (!) (van Alphen 2004):
- prevoicing absent in 25% of initial voiced plosive productions (studies on other languages, e.g., Polish, did not report such a high proportion of unprevoiced tokens. Cf. Hung: 100% of the initial lenis stops had prevoicing - Gósy & Ringen 2009)
- male speakers: more tokens with prevoicing (86% vs 65%)
Conclusions

- phonetic diversity does not necessarily imply phonological differences
- Germanic languages are much more uniform phonologically than assumed in recent literature
Conclusions

English as a purely [sg] language:

- "devoiced voiced" = unaspirated:

 \[\ldots \text{s}g\text{a}i \ldots = \ldots \text{sk}\text{æ}i \ldots \]

- no voice assimilation (as in [voice] languages):
 *zg