Chapter 3: The Sounds of Language: Phonetics
Part II: Vowels.

It is in vowels that accents of English differ most, often quite radically. If you speak an accent other than RP, you may find some vowels described here quite unfamiliar. Don’t let yourself be frightened by them: try to understand how they are articulated so that you would know what they sound like. Then you can compare them to the vowels of the accent that you speak.

To start with, let us recall what we know about vowels: What do they have in common? They are all voiced; moreover, since their articulation involves no obstruction, they are pure voice, without noise: they are the most sonorous sonorants. Since there is no obstruction, they are, of course, continuants. Any typically consonantal property (i.e., manner or place of obstruction) is absent in them.

The most difficult thing about describing vowels is that they have no readily identifiable place of articulation precisely because there is no obstruction during their production. Nevertheless, they can be described using three parameters.

First, as far as the oro-nasal process is concerned, vowels — just like consonants — can be pronounced with a lowered or a raised velum. Vowels produced with a raised velum are called, of course, oral ones: the raised velum shuts off the passage of the air through the nose, so all air leaves through the oral cavity. Lowered velum equals free passage through the nasal cavity; in such cases, the airflow passes through the nasal and the oral cavity at the same time. Such vowels are called nasal. French, Portuguese and Polish, among European languages, contain nasal vowels. In English and Hungarian, although nasal vowels do occur, they do so under special circumstances only, which we’ll discuss later.

Second, vowels can be articulated with rounded or spread lips. If you compare the vowel of too (IPA symbol: ʊ) with the one in tea (IPA symbol: i), you can easily notice that the former is rounded, the latter is unrounded.1 The world’s languages all have rounded as well as unrounded vowels (though the role of rounding varies: see the next chapter).

The third difference between vowels is in the position of the tongue. The tongue can move both vertically and horizontally in the mouth away from its neutral position. The neutral position of the tongue means its resting position, occupied by it when the mouth is closed. When in this position, the tongue is slightly raised above the floor of the mouth (vertically speaking), neither pushed forward or backward (horizontally speaking). From this neutral (resting) position, the tongue can be moved both horizontally and vertically: forward/backward as well as upward/downward. If the tongue is raised, it has more space to move forward or backward than when it is lowered towards the floor of the mouth. The possible horizontal/vertical movements of the tongue, then, roughly define a trapezium-shaped space within the mouth, showing the possible positions of the tongue that it can occupy during vowel production; for this reason, it is called the vowel space. The limits of the vowel space are, of course, defined by the anatomy of the human mouth. Downwards, the tongue can move as far as the floor of the mouth. Upwards, the tongue can theoretically move up to the palate, but remember that we’re dealing with vowel articulations; if the tongue approaches the palate too closely, it will result in an obstruction narrow enough to produce a consonant. The same goes for the other directions, i.e., backwards (towards the velum) — if the tongue approaches the velum too much, a velar consonant is produced, and forwards, where its movement is limited by the alveolar ridge (NB. no language has vowels articulated with the tip of the tongue leaving the mouth). The vowel space within the mouth is shown in the figure on the right. The centre of the trapezium equals the neutral position of the tongue. The figure indicates four vowels, produced in the four “corners” of the vowel space, which

1 Note that vowels produced with spread lips are called unrounded; there’s no such thing as a “spread” vowel.
means that the tongue is moved as far away from the centre — the neutral position — as possible both horizontally and vertically. If the tongue is moved as much forward and upward as possible (without making an obstruction with the roof of the mouth), one produces an i. This is the vowel of Hu kis; note that it is an unrounded vowel. This vowel is produced by the tongue pushed forward, this is why it’s a front vowel; and it is also high, because the tongue is raised high from its neutral position. The other high “corner” vowel is u, found in Hu utca, which, however, is back rather than front: the tongue is retracted towards the velum as much as possible. It’s also rounded. There are two low “corner” vowels, called low because the tongue is lowered from the neutral position while they are being articulated: one of them is the low front a, as in Hu ár, where it is pronounced long (= aː), the other one is the low back a, found in RP father, where it’s long (i.e., aː — it’s always long in RP), or GA got (where it’s short). The symbol a is called a “script A” in speech to distinguish it from the a symbol. Both of these vowels are unrounded.

A note of warning now: the terms high and low are not used in the same sense as magas and mély in traditional Hu grammatical descriptions; the Hu terms correspond to front and back, respectively, and they refer to the acoustic impression the vowels give! The terms high and low correspond to the Hu terms zárt and nyílt, resp. Identical terms (i.e., close and open) are also used in English by many phoneticians: you will have noticed yourself that lowering goes hand in hand with jaw opening, i.e., low vowels are pronounced with a significantly more open mouth (no wonder the doctor asks you to say “Aaah!” if he wants to look into your throat).

Within the vowel space, the tongue can move about freely: any point in the vowel space is a possible point for vowel articulation. This means that — theoretically, at least — there is an almost infinite number of possible vowels! How do we describe them? For

2 And, of course, oral. I’ll not mention oral articulation from now on, since vowels in E and Hu are normally oral; if I write about nasal vowels, I will indicate it unambiguously.

3 This vowel never occurs as short in Hungarian except in the Palóc accent as well as in the speech of some old speakers who use it in some words (mostly of foreign origin), but this is by now quite rare (if you watch Hungarian films made in the 1930’s and 1940’s, you can often hear words like parlament, abszolút, etc. with a short a).

4 For example, when you talk about the IPA transcription of a word, as in a phonology class. So, for instance: YOU TO TEACHER: ‘How should I transcribe the word father — with an “a”?’ TEACHER TO YOU: ‘No, with a “script a”.'
example, the tongue moves continuously between the high front and the low front position, from \(i \) to \(a \), as on a scale: we can characterise these two “extreme” vowels as “high front” and “low front”, but what about the ones between these two? As we move from \(i \) to \(a \), the vowels we produce are becoming more and more open — i.e., more and more similar to \(a \) and less and less similar to \(i \).\(^5\) Let’s see just three front vowels (all unrounded) in an order of decreasing height. First, take the vowel of Hu szép, transcribed by the IPA symbol \(e \) (as in Hu it is generally long, \(e \): is more appropriate here; but note that length does not affect articulation: \(e \) and \(e \backslash \) are produced with the same tongue position, i.e., they are the same vowel produced for a different amount of time): it is lower than \(i \), but it is still closer to it than to \(a \). If you move your tongue further, you will produce the vowel of Hu kert (transcribed as \(\varepsilon \) — a Greek letter epsylon), which is a bit closer to \(a \) than to \(i \). Then, you can still go on and produce a still lower vowel, as in the E word cat; this vowel is transcribed as \(\alpha \) (a letter called ash) in the IPA. We can show their approximate positions in the vowel space as in (8); the asterisk in the middle indicates the neutral position of the tongue:

\[\text{(8)} \]

Similarly, you can find vowels between corner ones along any other side of the trapezium, or, of course, within the trapezium, too. The most obvious case in point is the vowel articulated by the tongue not moved in any direction from its neutral position: this is indicated by the asterisk in (8). This vowel is found in a number of languages; in English, it is by far the most frequent vowel. It occurs, for example, in \(a g o \), \(b u t t e r \), \(e s c a l a t e \), etc.; its phonetic symbol is \(\alpha \), a turned letter “e”. It is such a widespread vowel in the world that it even has a name: it’s called the schwa, articulated right in the middle of the vowel space. Horizontally, the tongue is neither raised nor lowered from its neutral position when the schwa is produced: we say that it is a mid vowel, just like all vowels produced at the same height. Vertically, too, the tongue is not moved away from the neutral position, neither towards the front nor the back: the schwa is therefore called a central vowel, like all other vowels which are neither front nor back.

We can now use the term mid in combination with high and low to render intermediate stages. We’ll say that a vowel is mid-high if the tongue is slightly raised, as for \(e \); if the tongue is slightly lowered, as for \(\varepsilon \), we call it mid-low. The term mid is used to cover any vowel between mid-high and mid-low, incl. of course mid-high and mid-low ones.

The vowel space is now divided into three, roughly equal parts along the vertical dimension of height, and we can also divide it up into three parts along the horizontal dimension of backness. This division is shown in (9). The crossing of lines define specific vowel articulations. The crossings along the front and back sides of the vowel space provide 8 vowels altogether (high, mid-high, mid-low, low, both front and back). These arbitrarily selected points in the vowel space are referred to as the cardinal vowels (abbreviated CV), as shown below; the system of cardinal vowels was devised by the British phonetician Daniel Jones.

\(^5\) This is like with colours along the spectrum: there’s no clearcut boundary between them!
Of these vowels, two are as yet unknown to us. CV 7 is the vowel in Hu tok, while CV6 is found in E port (RP pot, GA port). As shown in the diagram, CV6-8 are rounded vowels, the rest are unrounded. If you change the rounding for these vowels, you will get Cardinal Vowels 9 to 16, referred to as the secondary cardinal vowels, as opposed to CV’s 1-8, the primary cardinal vowels; CV9 is front high, just like i (CV1), but it’s rounded; its phonetic symbol is y, and it is the vowel found in Hu ıt. CV10 is the rounded counterpart of CV2; it is found in Hu ơt; its IPA symbol is ø. The rest of the front secondary cardinal vowels are absent from E and Hu, so we’ll not go into details here.⁶ The rounded counterpart of CV5, i.e., CV13, is found in RP: its symbol is o, as in dog, sorry. (This vowel is absent in GA; words with an o in RP are pronounced with an a or an ø in GA, cf. GA dag, sori.) The vowel of standard Hu hat is similar, though not identical, to it; it’s between low and mid-low. The rest of the secondary cardinal vowels, viz. CV14-16, are not found in Hu or present-day RP, but one of them, CV14, deserves some comment.

The IPA symbol for CV14, a mid-low, back unrounded vowel, is a. Before the mid 20th century, this vowel was pronounced in RP in words like bus, love, come, rust, etc. This vowel has by now been replaced by a central vowel between mid-low and low. The phonetic symbol for it is u, i.e., a turned “a”. We can call it a central raised low unrounded vowel, where the term raised means that it is a bit higher than low, but not quite mid-low. Somewhat confusingly, dictionaries still use the symbol a when giving phonetic transcriptions for words like bus, etc. The reason for this is sheer conservativism: once the general public (mostly foreign learners of English) is used to certain symbols, it finds it convenient to keep them. For practical purposes, of course, using a is quite OK, since most dictionary users do not know about cardinal vowels anyway; but for linguistic purposes, it is inaccurate, and also disturbing: why use the symbol for CV14 to denote the vowel of bus when this word isn’t pronounced with that vowel? In this course, I will use u, therefore; please note that dictionaries use a to denote the same sound, a practice that is quite inaccurate from an IPA perspective. May I note that GA (and Scottish E) words like bus still have a vowel roughly like a, more precisely, a slightly fronted CV14.

This brings us to the importance and usefulness of the use of cardinal vowels as reference points. As I said earlier, the CV’s are arbitrarily selected points within the vowel

⁶ Of the better known European languages, CV11 is found in French and German; for instance, as in Fr coeur ‘heart’ or G Töchter ‘daughters’; its symbol is œ.
space; instead of distinguishing four degrees of height, we might as well distinguish three or five or six (or even more), for example, having a corresponding number of CV’s. But that would lead to problems. Three would probably be insufficient for an accurate description of vowels; more than four would probably mean too many symbols. The division into four heights serves us quite conveniently. Take, for instance, the GA vowel of *bus*, mentioned in the previous paragraph, similar to CV14. As a linguist, one can assume that fellow linguists are familiar with the cardinal vowels, i.e., we all know what they sound like. Imagine I don’t know what kind of vowel GA speakers pronounce in *bus*. Now, if someone describes it to me as a “fronted CV14”, I can produce it fairly easily: I articulate an å, then move my tongue a bit forward without changing the height or rounding. This is what we mean by saying that the CV’s are reference points: other vowels are described with reference to them.

This also makes it unnecessary to use a disturbingly large amount of different symbols. It is enough to introduce diacritics (Hu mellékJelek), i.e., little marks added to symbols for CV’s. For example, the IPA uses the subscript diacritic “+” to indicate fronted articulation; the GA vowel of *bus* is then transcribable as å — read out as “fronted å”. We can use diacritics to indicate raised or lowered articulations, too. Take, for example, the vowel of the word *let* in English. Most dictionaries transcribe the word as let, suggesting that it contains CV2, i.e., the same vowel (although short) as in Hu két. This is only true for some accents, such as Australian; most accents of English have a lower vowel. ConsRP has a lowered CV2, a vowel between CV2 and CV3 but nearer to the former. This can be indicated with a subscript “lowered” diacritic: ɛ. AdvRP and GA, on the other hand, have an even lower vowel, still between CV2 and CV3, but nearer to the latter. This can be indicated by using the symbol for CV3 with a subscript “raised” diacritic: ɛ. Finally, some accents, like Scottish E, have CV3 (ɛ) in *let*.

Now, of course, to use diacritic marks all the time whenever transcribing words is bothersome and it is also unnecessary; once we have described the sounds precisely, we can use the symbol for the nearest CV. For example, AdvRP (and GA) have no ɛ (CV3), only ɛ. As a result, we can simply use the symbol ɛ when transcribing words like *let*, since we now know that there’s a raised CV3 in such words. This is a simplifying strategy which is permissible.

In some cases, the IPA uses separate symbols for “intermediate” vowels, such as æ (for a raised CV4). But this is relatively rare, and it only happens if the vowel in question is rather frequent in the world’s languages. Two such important vowels are the ones found in E *bit* and *put*, transcribed as i and o, respectively. Both are high vowels, not far from CV1 and CV8, respectively, but they are both a bit lower and also a bit more central than those. The vowel of *bit* is characterisable as a lowered-centralised high front unrounded vowel; the vowel of *put* is lowered-centralised high back rounded.

One final note: you may wonder why both the primary CV series (1-8) and the secondary CV series (9-16) are “mixed” according to roundedness. As you may have noticed, of the primary CV’s, all except CV6-8 are unrounded; of the secondary CV’s, all except CV14-16 are rounded. If you compare CV’s 6-8 and 14-16, you can see that all six have something in common: they are all non-low back vowels. The other vowels are either low or front. The reason for this is that front as well as low vowels tend to be unrounded in the world’s languages, whereas back non-low ones tend to be rounded. That is, CV’s 1-5 are more frequent and basic than CV’s 9-13; at the same time, CV’s 6-8 are more frequent and basic than CV’s 14-16. The CV system as devised by Jones reflects this: the primary CV set contains precisely the more basic and frequent vowels. You may, of course, ask what we mean by saying that the primary CV’s are “more basic and frequent”. Roughly, there are two observations behind this statement. First, they are statistically more frequent, i.e., they are
found in a much larger number of languages. For instance, \(y \) (CV 9, as in Hu üt) — however
normal it may seem to Hungarian speakers — is a very rare vowel in the world, restricted
basically to the northwestern parts of Eurasia (found in Uralic, Altaic and Indo-European),
virtually nonexistent among the indigenous languages of Africa, Australia, and the Americas.
Second, primary cardinal vowels are more basic in the sense that the existence of a secondary
cardinal vowel implies the existence of its primary counterpart (i.e., the vowel with the same
height and backness but the opposite rounding). For example, if a language has \(y \), it also has
the corresponding (unrounded) cardinal vowel, i.e., \(i \): we don’t know of languages with CV9
but without CV1.

Let us now turn our attention to the vowels of AdvRP. It — like all E accents — has
both monophthongs and diphthongs.\(^7\) Monophthongs are “pure” vowels in the sense that
their quality (articulation) is constant; they are short or long in RP. Diphthongs are long
vowels whose articulation is not constant; for example, the vowel of house is a diphthong \(au \),
starting as CV4 but ending as the put-vowel\(^8\).

Let’s see the short monophthongs first, as in the table below; for each vowel, a key
word is given so you can identify the vowel with its help. “Wells” refers to J. C. Wells’
Longman Pronunciation Dictionary, but most popular dictionaries, e.g., Oxford Advanced
Learner’s (“Hornby”), use the same symbols as Wells. This system of transcription for RP
was devised by A.C. Gimson, and it’s called the “Gimsonian system”. Some older
dictionaries, such as the old two-volume “Országh”, use a slightly different system devised by
Daniel Jones (the linguist who devised the cardinal vowel system).

<table>
<thead>
<tr>
<th>Key word</th>
<th>Symbol used in this course</th>
<th>Name of the IPA symbol</th>
<th>Phonetic description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>(\text{\textit{i}})</td>
<td>Small Capital I</td>
<td>Lowered-centralised high front unrounded</td>
<td>—</td>
</tr>
<tr>
<td>set</td>
<td>(\text{\textit{e}})</td>
<td>Epsilon</td>
<td>Raised mid-low front unrounded (= raised CV3, (\text{\textit{e}}))</td>
<td>Wells uses (\text{\textit{e}}), which is OK for ConsRP (\text{\textit{e}}) but (\text{\textit{e}}) is better for AdvRP or GA (\text{\textit{e}})</td>
</tr>
<tr>
<td>hat</td>
<td>(\text{\textit{æ}})</td>
<td>Ash</td>
<td>Low-mid-low front unrounded, between CV’s 3 and 4</td>
<td>! Not the same as “Esh”, which = (\text{\textit{j}})</td>
</tr>
<tr>
<td>cut</td>
<td>(\text{\textit{ə}})</td>
<td>Turned A</td>
<td>Raised low central unrounded</td>
<td>Wells’ (\text{\textit{ə}}) (called “Turned V”) is not appropriate for RP, but OK for GA</td>
</tr>
</tbody>
</table>

\(^7\) Pay attention to the spelling of monophthong and diphthong, both with \textit{phth}, not with *\textit{pth}!
\(^8\) The term “put-vowel” is used to mean, of course, “the vowel of put”.
The diagram below shows the short monophthongs of AdvRP in the vowel space:

![Vowel Diagram](image)

The long monophthongs are as follows; note that the length mark (ı) merely shows that a vowel is pronounced long, but does not indicate a different quality (articulation): Hu kis and csík have the same vowel (CV1), pronounced short in kis, long in csík. In English, short and long vowels do not coincide in articulation (with one exception in AdvRP).

<table>
<thead>
<tr>
<th>Key word</th>
<th>Symbol used in this course</th>
<th>Name of the IPA symbol (disregarding the mark)</th>
<th>Phonetic description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>meat</td>
<td>i:</td>
<td>I</td>
<td>Lowered front high unrounded (lowered CV1, = i)</td>
<td>Often diphthongised, see below</td>
</tr>
<tr>
<td>moon</td>
<td>u:</td>
<td>U</td>
<td>Lowered back high rounded (lowered CV8 = u)</td>
<td>Often diphthongised or fronted, see below</td>
</tr>
<tr>
<td>fair</td>
<td>e:</td>
<td>Epsilon</td>
<td>Raised mid-low front unrounded (= raised CV3, ei), i.e., the same as in set but long</td>
<td>Wells uses ea, which reflects the ConsRP pronunciation; see below. No ei in GA!</td>
</tr>
<tr>
<td>girl</td>
<td>3:</td>
<td>Reversed Epsilon</td>
<td>Central mid-low unrounded</td>
<td>—</td>
</tr>
<tr>
<td>car</td>
<td>a:</td>
<td>Script A</td>
<td>Low back unrounded, CV5</td>
<td>—</td>
</tr>
</tbody>
</table>
Some observations are in order. First, the high vowels are a bit lower than CV’s 1 and 8. For an increasing number of speakers, they are replaced by diphthongs, viz. \(\text{i}\text{i} \) and \(\text{ou} \), respectively. This diphthongisation is especially strong with \(\text{i}\text{i} \), and very marked in word-final position (as in see). In England, \(\text{u}\text{u} \) is often replaced by a central high rounded vowel, one intermediate between \(\text{u}\text{u} \) and \(\text{y}\text{u} \) (the IPA symbol is \(\text{u} \), called “Barred U”, i.e., \(\text{u} \) here, since it’s long), but this is not typical of RP; it is extremely widespread in colloquial London English.\(^9\) I will keep the monophthongal symbols but note that the diphthongal pronunciations may actually well be more frequent in AdvRP and they will probably become exclusive within one or two generations’ time.

Second, words such as \textit{fair}, generally pronounced with a monophthong \(\text{e}\text{e} \) in AdvRP, have a diphthong \(\text{e}\text{a} \) in ConsRP. This diphthongal pronunciation is very rare with younger speakers (if found at all), so I will use \(\text{e}\text{e} \).

Third, of the long monophthongs, \(\text{i}\text{i} \) and \(\text{u}\text{u} \) never occur before an immediately following \(\text{r} \) within the same word. At this point, I would only like to draw your attention to this fact; we’ll discuss it in detail later on.

Here are the long AdvRP monophthongs arranged in the vowel space:

Finally, let’s make another diagram showing all AdvRP monophthongs:

\(^9\) This sound is intermediate between CV8 and CV9 not only articulatorily, but acoustically, too; for this reason, the typical London pronunciation of \textit{two} (= \textit{tu}\text{u}) may sound to the Hungarian ear almost as if it was = Hu \textit{til}!
English also has several diphthongs, but how many and of what qualities is a matter of considerable variation across accents (we have already seen one example, cf. the *fair*-vowel above). RP diphthongs are of two types, depending on what they end in: 1. **closing diphthongs**, ending in a high (=close) vowel, viz. *i* or *u*; ones ending in *i* are called **fronting**, those which end in *u* are **backing**. 2. **centring diphthongs**, ending in the central mid vowel *ə* (schwa). Schematically:

```
DIPHTHONGS
  closing
    fronting  backing
  centring
```

Here they are; note that the symbols used in this book are the same as those used in Wells.

<table>
<thead>
<tr>
<th>Key word</th>
<th>Symbol used in this course</th>
<th>Phonetic description</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>a1</td>
<td>Starts with a retracted(^{10}) CV4 (= a), ends in i.</td>
</tr>
<tr>
<td>face</td>
<td>e1</td>
<td>Starts with a lowered CV2 (= e), ends in i.</td>
</tr>
<tr>
<td>choice</td>
<td>ə1</td>
<td>Starts with CV6, ends in i.</td>
</tr>
<tr>
<td>house</td>
<td>aʊ</td>
<td>Starts with CV4, ends in u.</td>
</tr>
<tr>
<td>road</td>
<td>əʊ</td>
<td>Starts with a schwa, ends in u.</td>
</tr>
<tr>
<td>beer</td>
<td>əʊ</td>
<td>Starts with i, ends in schwa.</td>
</tr>
<tr>
<td>cure</td>
<td>əə</td>
<td>Starts with u, ends in schwa.</td>
</tr>
</tbody>
</table>

Several of the diphthongs deserve some notes.

1) Though transcribed with a starting CV4 (= a), the vowels of *time* and *house* are not identical: as pointed out in the above table, the *time*-vowel begins with a retracted, almost central vowel, which is not found in the *house*-vowel; in fact, the latter tends to be pronounced with a somewhat raised CV4 (= ə). In Southern England, including London, it starts with an even higher tongue position, i.e., it is əʊ; this is often heard in the United States, too. In London English, the first element of the *time*-vowel is even more retracted, to such an extent that *time* is pronounced *təm* in London. The pronunciations əʊ and aʊ are likely to become widespread in RP, too, quite soon. The diphthongs a1 and aʊ are collectively called the **wide diphthongs**, as opposed to the other diphthongs, called **narrow**.

2) The *road*-vowel is often transcribed in dictionaries as ʊʊ, i.e., a diphthong beginning with CV7. This is the most usual pronunciation in North America, as well as in many parts of the British Isles, but it’s practically never heard in RP or South-East England. In RP, it is often replaced by ʊʊ before a word-final *l*, so *pole* is often pronounced as *pool*, but this isn’t obligatory.

3) The centring diphthongs do not exist in GA, and their number has decreased from four to two in AdvRP, too. As said above, *fair*-words have a centring diphthong əʊ in ConsRP, which

\(^{10}\) "retracted" means moved somewhat backwards, i.e., the opposite of “fronted”.
is practically never heard in AdvRP. “Ultra-conservative” RP has a fourth centring diphthong,
\textit{æ}, as in \textit{store, door, four}, etc., but this is so rare that it can be considered obsolete by now. Words which have an \textit{æ} in “Ultra-Cons” RP have an \textit{ə} in both Cons and AdvRP. Of the two centring diphthongs of AdvRP, \textit{ʊə}, too, shows a tendency to monophthongise to \textit{ə}, but this is far from being widespread. The monophthongal pronunciation is very often heard in a few common words (for instance, \textit{sure} is pronounced both \textit{jʊə} and \textit{jə}); in the forms \textit{your} and \textit{you’re}, it has become the standard (both are typically pronounced \textit{jə} in RP, the older diphthongal variant, \textit{jʊə}, is very rare).

In the vowel space, the diphthongs can be shown in the form of arrows, pointing from the first element’s position towards the second element. So, for example, the diphthongs \textit{ai}, \textit{au} and \textit{əə}:

\begin{center}
\begin{tikzpicture}
\draw[->] (0,0) -- (0,1);
\draw[->] (0,0) -- (1,0);
\draw[->] (0,0) -- (-1,0);
\draw[->] (0,0) -- (0,1.5);
\draw[->] (0,0) -- (1.5,0);
\draw[->] (0,0) -- (-1.5,0);
\draw[->] (0,0) -- (0,2);
\node at (0,0) {a};
\node at (0,1) {ə};
\node at (0,1.5) {əə};
\node at (0,2) {i};
\node at (1,0) {ə};
\node at (1.5,0) {ə};
\node at (2,0) {ə};
\end{tikzpicture}
\end{center}

This concludes our lengthy discussion of phonetics. Take a break now so you can enter the realm of English words. We’ll start with the basics of sound structure — phonology.